368 research outputs found

    Funicularity in elastic domes: Coupled effects of shape and thickness

    Get PDF
    An historical overview is presented concerning the theory of shell structures and thin domes. Early conjectures proposed, among others, by French, German, and Russian Authors are discussed. Static and kinematic matrix operator equations are formulated explicitly in the case of shells of revolution and thin domes. It is realized how the static and kinematic matrix operators are one the adjoint of the other, and, on the other hand, it can be rigorously demonstrated through the definition of stiffness matrix and the application of virtual work principle. In this context, any possible omission present in the previous approaches becomes evident. As regards thin shells of revolution (thin domes), the elastic problem results to be internally statically-determinate, in analogy to the case of curved beams, being characterized by a system of two equilibrium equations in two unknowns. Thus, the elastic solution can be obtained just based on the equilibrium equations and independently of the shape of the membrane itself. The same cannot be affirmed for the unidimensional elements without flexural stiffness (ropes). Generally speaking, the static problem of elastic domes is governed by two parameters, the constraint reactions being assumed to be tangential to meridians at the dome edges: the shallowness ratio and the thickness of the dome. On the other hand, when the dome thickness tends to zero, the funicularity emerges and prevails, independently of the shallowness ratio or the shape of the dome. When the thickness is finite, an optimal shape is demonstrated to exist, which minimizes the flexural regime if compared to the membrane one

    Scale effects in the post-cracking behaviour of fibre-reinforced concrete beams

    Get PDF
    The scale effects on the global structural response of fibre-reinforced concrete (FRC) beams subjected to bending are discussed in the framework of Fracture Mechanics by means of the Updated Bridged Crack Model (UBCM). This model predicts different post-cracking regimes depending on two dimensionless numbers: the reinforcement brittleness number, NP, which is related to the fibre volume fraction, Vf; and the pull-out brittleness number, Nw, which is related to the fibre embedment length, wc. Both these dimensionless numbers depend on the beam depth, h, which, keeping the other variables to be constant, drives a ductile-to-brittle transition in the post-cracking regime of the composite. The critical value of the reinforcement brittleness number, NPC, allows for prediction of the minimum (critical) specimen size, hmin, which, analogously to the minimum fibre volume fraction, Vf,min, is required to achieve a stable post-cracking response. Numerical simulations are compared to experimental results reported in the scientific literature, in which FRC specimens, characterized by the same fibre volume fraction but different sizes, are tested in bending

    Scale-dependent maximum reinforcement percentage in reinforced concrete beams

    Get PDF
    The Cohesive/Overlapping Crack Model is able to describe the transition between cracking and crushing failures occurring in reinforced concrete beams by increasing beam depth and/or steel percentage. Within this Nonlinear Fracture Mechanics model, the tensile and compressive ultimate behaviors of the concrete matrix are modeled through two different process zones that advance independently one of another. Moreover, this model is able to investigate local mechanical instabilities occurring in the structural behavior of reinforced concrete structures: tensile snap-back and snap-through, which are due to concrete cracking or steel fracture, and the compressive snap-back occurring at the end of the plastic plateau, which is generated by the unstable growth of the crushing zone. In this context, the application of the Cohesive/Overlapping Crack Model highlights that the ductility, which is represented by the plastic rotation capacity of a reinforced concrete element subjected to bending, decreases as reinforcement percentage and/or beam depth increase. Thus, a scale-dependent maximum reinforcement percentage beyond which concrete crushing occurs prior to steel yielding is demonstrated to exist. In particular, the maximum steel percentage results to be inversely proportional to h0.25, h being the beam depth. In this way, a rational and quantitative definition of over-reinforcement is provided as a steel percentage depending on the beam depth

    A review on acoustic emission monitoring for damage detection in masonry structures

    Get PDF
    Acoustic emission monitoring is widely used for damage detection in materials research and for site monitoring. Its use for masonry structures is however challenging due to the highly heterogenic nature of masonry and rapid signal attenuation. However, the non-invasive nature and high sensitivity of the technique also provide interesting opportunities, especially for historical masonry structures, to locate damage, identify severity of damage and rate of deterioration. Aim of this paper is to provide an extensive literature review on the application of the acoustic emission technique for masonry structures, addressing specific challenges and recent findings. AE-based methods for damage assessment in masonry are discussed in view of monitoring approaches, wave propagation, source location and crack development under static, fatigue and creep loading. Site applications are discussed for identifying crack location and crack propagation in historical masonry towers, buildings and masonry arch bridges. The paper concludes with future challenges identified in this research field

    A low-cost portable vocal analyser for long-term monitoring and clinical investigation

    Get PDF
    A low-cost portable device has been developed at Politecnico di Torino to provide traceable measurements of vocal parameters during long-term monitoring as well as short ambulatory tests. The device, named Voice Care, is based on a contact microphone that is attached to the jugular notch of the subject under monitoring and on a wearable data acquisition unit that stores the raw samples of the signal generated by the vocal folds’ vibration. Post processing algorithms have been assessed to evaluate the vocal effort and the vocal load that voice professionals are subjected to during their daily activity, estimating the parameters sound pressure level, fundamental frequency and phonation time percentage. Other investigations are related to the length of voiced and unvoiced frames, whose distribution are dependent on the acoustic characteristics of the environment where the voice monitoring takes place. Another application of the Voice Care is related to short-term ambulatory tests, which allows the cooperation with physicians to make the device a reliable diagnostic tool. Processing algorithms have been extended to estimate other parameters, such as jitter, shimmer and voice quality indexes, that allow the phonatory status of the subject under monitoring to be evaluated. An experimental campaign has been performed involving thirty teachers in four primary schools who have been monitored for two to four days across one week of teaching. The effectiveness of the proposed device has been shown by the obtained results, which were in good agreement with the subjective impression and the classroom acoustics. Other specific tests have been performed in very different acoustic environments (anechoic, reverberant and semi- reverberant chambers) to highlight the device capability in evaluating the environment effects on the vocal production. Ambulatory tests for the optimization of the Voice Care as a diagnostic tool are planned to be carried out soon

    Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload.

    Get PDF
    We have previously shown that genetic ablation of melusin, a muscle specific beta 1 integrin interacting protein, accelerates left ventricle (LV) dilation and heart failure in response to pressure overload. Here we show that melusin expression was increased during compensated cardiac hypertrophy in mice subjected to 1 week pressure overload, but returned to basal levels in LV that have undergone dilation after 12 weeks of pressure overload. To better understand the role of melusin in cardiac remodeling, we overexpressed melusin in heart of transgenic mice. Echocardiography analysis indicated that melusin over-expression induced a mild cardiac hypertrophy in basal conditions (30% increase in interventricular septum thickness) with no obvious structural and functional alterations. After prolonged pressure overload (12 weeks), melusin overexpressing hearts underwent further hypertrophy retaining concentric LV remodeling and full contractile function, whereas wild-type LV showed pronounced chamber dilation with an impaired contractility. Analysis of signaling pathways indicated that melusin overexpression induced increased basal phosphorylation of GSK3beta and ERK1/2. Moreover, AKT, GSK3beta and ERK1/2 were hyper-phosphorylated on pressure overload in melusin overexpressing compared with wild-type mice. In addition, after 12 weeks of pressure overload LV of melusin overexpressing mice showed a very low level of cardiomyocyte apoptosis and stromal tissue deposition, as well as increased capillary density compared with wild-type. These results demonstrate that melusin overexpression allows prolonged concentric compensatory hypertrophy and protects against the transition toward cardiac dilation and failure in response to long-standing pressure overload
    • …
    corecore